Data assimilation Sessions &
Plan for cooperation in ACCORD DA area

Roger Randriamampianina

Thanks to: Benedikt Strajnar and Loïk Berre

16.04.2021, video-conference
Outline

➢ Working strategy within ACCORD DA area

➢ Outcome of the 1rst ACCORD workshop
 ○ Few points from the DA sessions
 ○ Few points from the discussions
Working strategy within ACCORD DA area

➢ After consultation with Benedikt Strajnar and Loïk Berre

➢ Until now:
 ○ In LACE:
 ■ well organised stays/scientific visits
 ■ working days (once a year)
 ● exchange of developments/achievements. Direct interaction with developers
 ○ In HIRLAM:
 ■ working weeks
 ● exchange of developments/achievements. Direct interaction with developers
 ● Solve together concrete problems (hands in)
 ○ Video meetings:
 ■ Five groups of topics (Conv obs; radiances, retrievals, radar data, algorithm)

➢ We would like to try
 ○ Stays will be planned further when both host and visitor have maximized working time.
 ○ working days/week:
 ■ Roger will collect in advance all the achievements to be known preferably prior to the meeting
 ■ The information about 1) needed settings, 2) short description of lesson learned, and 3) scientific documentation or presentation.
 ■ Minimum two of “DA1/DA3 meetings “-- guaranteeing the blue points above will be organised.
Working strategy within ACCORD DA area

➢ Formation of teams
 ○ Research teams (DA2, DA4, DA5, DA6):
 ■ Teams will be formed to deal with some high priority tasks from the rolling work plan
 ● Reasonable number of research teams
 ● Face to face meetings will be organised in order to solve together concrete problems
 ● Regular video meetings will be organised
 ○ Support teams (DA1, DA3, DA7):
 ■ can be as many as needed and can define regular or by demand video meetings
 ■ meet at working weeks
 ● exchange of developments/achievements. Direct interaction with developers

➢ Avoid repetition of development works
 ○ Porting of developments:
 ■ CSC leaders are responsible for the implementation of the new developments
 ■ All developments/achievements should be ready to be used in each CSC
 ■ All developments will be delivered in form of “pluggable” functions into all three CSC DA system
 ● Function: comprises all needed manipulation of input data, namelist setup and takes care files naming conventions
 ■ Developers are responsible for the “functions”, short how-to describing the implementation process, changed source codes, and scientific documentation if appropriate
 ■ Little by little we build a common and modular DA system
 ■ The functions will be prepared to be called in Bator, Canari, Screening, or minimisation
Avoid repetition of development works

- Transparent developments:
 - In long term we will have transparent development throughout all CSCs
 - Use of Davaï for testing all developments

Co-leading the teams:

- The teams work will be co-lead with one or two members from the teams
Outcome of the 1rst workshop

➢ **DA1: Further development of 3D-Var (alg. Settings)**
 - Accounting for low resolution observations using supermodding approach (Máté Mile PhD): https://doi.org/10.1002/qj.3979
 - Accounting for large scale information:
 - Variational assimilation without J_k term but using B^\sim and x^\sim_p (Ole Vignes)
 - Need of new strategy to construct EDA-based LAM EPS (Ulf Andrae)
 - Variational constraint scheme was proposed (Carlos Geijo)
 - Need for tuning of B error covariance when increasing the model resolution (Viktoria Homonnai)
 - weak coupling between surface and upper-air DA: concept proved (Jostein/Yurii/Trygve)

➢ **DA2: Development of flow-dependent algorithms**
 - Multi-incremental 4D-Var and improved use of observations in Harmonie-AROME (Jan Barkmeijer)
 - Hybrid EnVar in Harmonie-AROME (Jelena Bojarova)
 - 3D/4DEnVar in AROME-France (Pierre Brousseau)
 - 3D-Var in and outside OOPS are identical
 - OOPS_3DEnVar considered for e-suite in 2022
 - size of the EDA?
 - Variational constraint (tested with field alignment) in Harmonie-AROME (Carlos Geijo)
DA3: Use of existing observations

- **Radar data:**
 - There is room for improvement in AROME for both DOW (Jana Sanchez) and REFL (Maud Martet)
 - Reflectivity DA tested in high res ALARO (Benedikt Strajnar)

- **Aircraft-based observations:**
 - Mode-S EHS EMADDC (Alena Trojáková) and MRAR (Gabriella Tóth)

- **Scatterometer:**
 - Impact of ASCAT in 3D/4D-Var (CY43) and testing of HY-2B in CY46 (Isabel Monteiro)

- **Atmospheric Motion Vectors:**
 - adding data from middle level clouds (Zsofia Kocsis)

- **Clear sky radiances:**
 - adding ATMS, MWHS2, CrIS, IASI: (M Lindskog, R Eresmaa, J Campins, E Whelan)
 - *consider updating the VarBC coefficients differently, e.g when we have full coverage of instrument* (R. Eresmaa)

- **High resolution radiosonde:**
 - Descent data (Roger Randriamampianina, Eoin Whelan)
 - *vertical interpolation was questioned* (Reima Eresmaa)

- **GNSS ZTD:**
 - applied also in RUC from fixed (B Strajnar) and *moving (train) platforms* (Phillip Scheffknecht)

- **Netatmo surface pressure:**
 - (see next slide)
Outcome of the 1rst workshop

DA4: Use of new observations types

- Surface pressure from Netatmo:
 - quality control (machine learning) and bias correction under investigation (iOBS project)

- Surface pressure from smartphones:
 - data are out of personal ID but collected with reduced location accuracy
 - quality control and bias correction need to be worked out

- High resolution T2m and Hu2m from Netatmo:
 - promising results in nowcasting in MetCoOp and at ZAMG

- Commercial microwave links:
 - work in progress (Phillip Scheffknecht)
 - need a suitable observation operator for "rain rate" type of observation

- MTG lightning:
 - pseudo observations tested successfully in AROME-France (Felix Erdmann)
 - potential observation operators based on microphysics and regression models were shown (Pauline COMBARNOUS)

- All-sky radiance:
 - work in progress (Alertness project, Roohollah Azad)

- Aeolus HLOS data:
 - successfully tested with 3D/4D-Var in Harmonie-AROME (Susanna Hagelin)
 - rather neutral impact on analyses and forecasts
Outcome of the 1rst workshop

➢ DA5: Development of assimilation setups suited for nowcasting
 o Radar reflectivity:
 ■ tested in AROME RUC (Florian Meier)
 o High resolution T2m and Hu2m from Netatmo:
 ■ promising results in nowcasting in MetCoOp and at ZAMG
 o Atmospheric motion vectors:
 ■ added in MetCoOp nowcasting (David Schönach)
 o Field alignment and Variational constraint schemes:
 ■ successfully tested in OSSE framework (Carlos Geijo)

➢ DA6: Participation in OOPS (Pierre Brousseau)
 o Testing 3D-Var in AROME-France:
 ■ MASTERODB and OOVAR analysis identical in CY46
 o Testing 3D-Var in ALARO:
 ■ tested technically with 3D-Var and ALARO in MF machine
 o Adding hydrometeors variables:
 ■ tested in AROME-France with direct assimilation of radar data (Maud Martet)
 o Adding NH variables:
 ■ tested with single observations
Outcome of the 1rst workshop

➢ DA7: Observation pre-processing and diagnostic tools
 ○ Obsmon:
 ▪ Many new features (Paulo Medeiros)
 ○ MTEN:
 ▪ New presentation of the results (Zheng Qi Wang)
 ○ SAPP:
 ▪ Well presented by Yelis Cengiz. *Exchange of settings and setup seems to be required.*

➢ DA8: Basic data assimilation setup (Maria Monteiro)
 ○ Bator with conventional observation:
 ▪ All ready
 ○ Surface assimilation:
 ▪ All tested cycling
 ○ Background error statistics:
 ▪ 6 out of 8 have the downscaled version
 ○ Upper-air DA:
 ▪ cycling available in 3 out 8
 ○ Modular scheduler:
 ▪ good progress
More thoughts from the discussions

- **Sub-hourly data assimilation**: Roger plans to organise a dedicated team to discuss this issue.
- **Experience with single precision (Filip Vana)**:
 - SP will be used for trajectory runs and observation handling in ODB.
 - No speed-up on Cray because of hacked Lapack library which uses double precision internally.
- **Need for non-hydrostatic EnVar (Pierre Brousseau)**:
 - Studied only in one case with severe convection.
 - OOPS_EnVar is a good environment to add and evaluate different variables in the control vector.
- **Surface pressure vs. geopotential assimilation**:
 - It is preferable to use pressure in combination with bias correction.
 - The development is available but not yet in the common/export codes.
- **Tuning observation errors**:
 - Desrozier’s approach is not enough. More diagnostic tools or evaluation approaches are needed.
- **Correlated observations errors**:
 - Changing the thinning distance and inflation of the observation error was shown to provide similar results.