
EOROLOGICAL INSTITUTE

MetCoOp-Nowcasting (MNWC)

Status and developments

30 March 2023 Tallinn, Estonia

Erik Gregow Finnish Meteorological Institute (FMI)

Outline of presentation

Operational status:

Metcoop-NoWCasting (MNWC)

Developments, on-going and planned:

Own-cycling and NetAtmo

High-resolution

	MEPS_prod	MNWC_prod		
Model version	Harmonie-Arome cy43h2.1.1	Harmonie-Arome cy43h2.1.1		
Operational status	Prod	Prod (04 Oct 2022)		
Resolution (horizontal)	2.5 km	2.5 km		
Domain	METCOOP25D	METCOOP25D		
Forecast cycles	00, 03, 06, 21 Every 3'rd hour	00, 01, 02, 23 Every hour		
Use of own-cycling	Yes, first-guess from prev. fc.	No. First-guess from MEPS fc. (Rapid-refresh, +3+5h old fc.)		
Forecast length & frequency	+66h lead-time, hourly output	+12h lead-time, 15 min output		
Output format	Grib2 (Grib1 for SFC hourly)	Grib2 (Grib1 for SFC hourly)		
Cut-off observations	1 h 15 min	25 min		
Available to end-user	~2,5h	~1h		
Cloud-ingest method	No	Yes		
GNSS usage	Yes, whole domain hourly	Yes, Sweden sub-hourly data		
Upper-air assimilation (T2m & RH2m)	No	Yes		
SFC analysis	Canari	pySURFEX		

Main differences between MNWC and MEPS

Shorter cut-off time of observations:

Less observations available as input Impact on the quality of forecasts

	MEPS (approximate)	MNWC (approximate)	MNWC/MEPS (approximate)
Soundings	20'000	0	0-10%
Surface obs	17'000	6'000	30-50%
Drifting bouys	250	90	30-50%
Aircraft/ModeS	1'600'000	1'100'000	60-80%
Satellite	4'200'000	3'400'000	60-80%
Radar	3'600'000	3'500'000	95-100%

Main differences between MNWC and MEPS

Use of pySURFEX (instead of Canari) for the surface analysis and data-assimilation

Use of different Python-tools to process observations and create the surface analysis

- TITAN for quality control
- GridPP to do the optimal interpolation

Verification scores for surface are improved

pySURFEX have the capability to use NetAtmo observations

Expert knowledge within MetCoOp

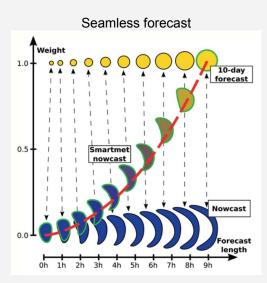
- pySURFEX developed at the Norwegian Meteorological Institute (Trygve Aspelien)

Use of cloud-ingest method

Motivation:

Low clouds, fog and precipitation are major problems in forecast models Aviation, NMHS's and renewable energy sector benefit from better forecasts Development of seamless forecasts (obs, short-range fc, medium-range fc)

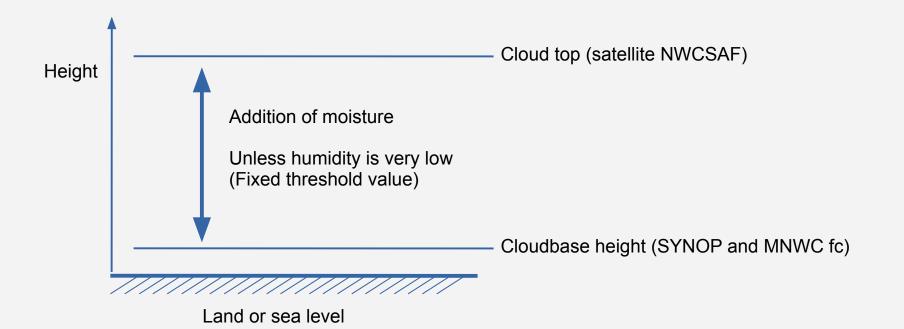
Cloud-ingest method in MNWC model:

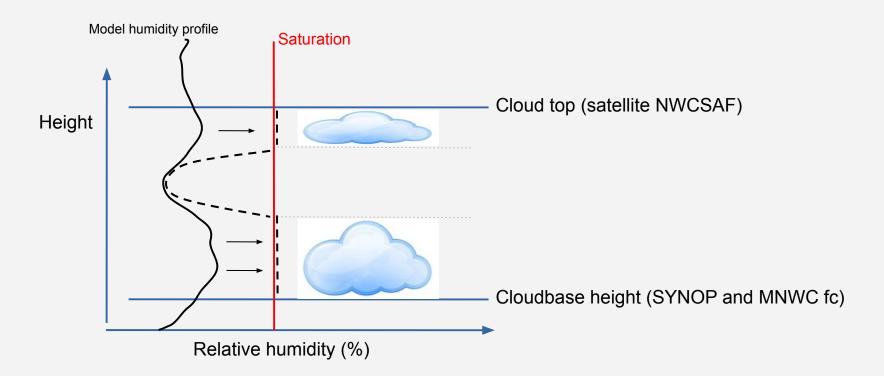

Modification to the 3D-humidity of the analyzed fields:

Affects the cloud and precipitation pattern to become more realistic

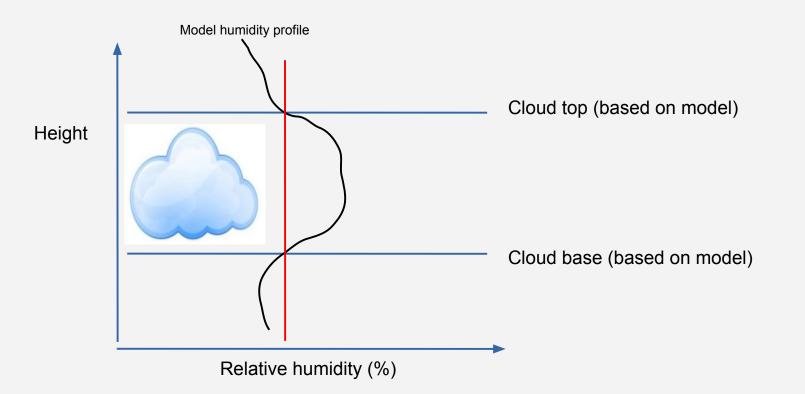
Cloud-ingest process uses:

Satellite products (NWCSAF); cloud-fraction and cloud-top temperature

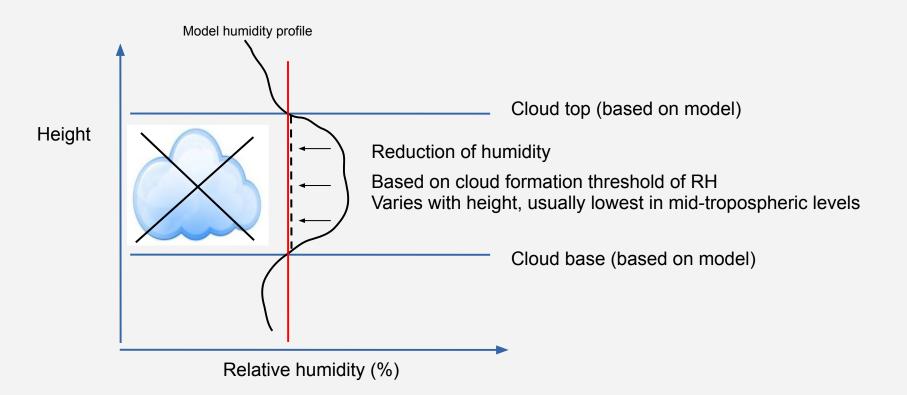

Cloud-base from Synop observations and first-guess field from previous MNWC forecast (GridPP)



1. Satellite observe clouds but the model has no clouds

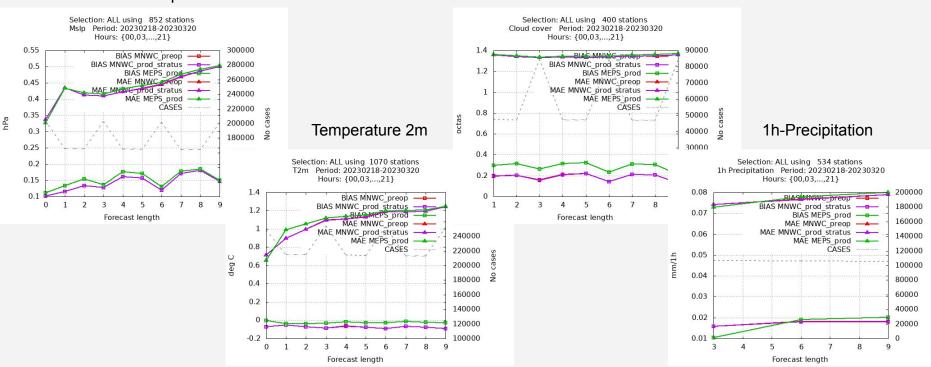


1. Satellite observe clouds but the model has no clouds



2. Satellite observe clear sky but model has clouds

2. Satellite observe clear sky but model has clouds



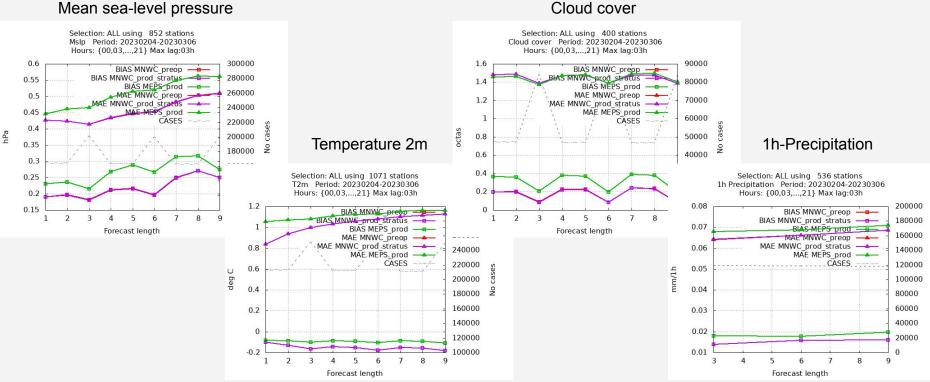
Verification of MNWC vs MEPS

Forecast scores using "same cycles" from models MNWC_prod is better than MEPS_prod for most variables, not all

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Period: 1 month 18 Feb - 20 Mar 2023

Cloud cover


Mean sea-level pressure

Verification of MNWC vs MEPS

For "lagged" verification MNWC show even better scores Here **MNWC** prod is better than **MEPS** prod for all variables

Period: 1 month 18 Feb - 20 Mar 2023

Mean sea-level pressure

Outline of presentation

Operational status:

Metcoop-NoWCasting (MNWC)

Developments, on-going and planned:

Own-cycling and NetAtmo

High-resolution

Period: 16-31 Aug 2022 (2 weeks)

Ref1 - MNWC_preop with FG from MEPS

Exp2 - Cycling +1h forecast from previous run. Warm-start

- Exp3 Cycling +3h forecast from previous run. Warm-start
- Exp4 Cycling +3h forecast from previous run. Warm-start. Use NetAtmo: RH2m
- Exp5 Cycling +3h forecast from previous run. Warm-start. Use NetAtmo: RH2m and T2m

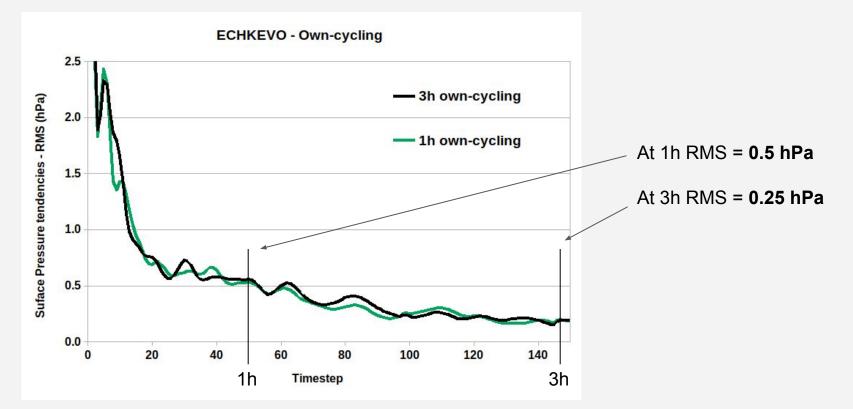
Period: 16-31 Aug 2022 (2 weeks)

Ref1 - MNWC_preop with FG from MEPS

Exp2 - Cycling +1h forecast from previous run. Warm-start

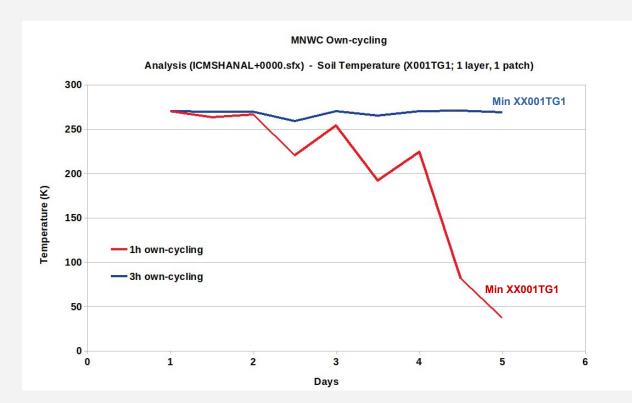
Crash beg of Forecast after 4 days! ► SIGFPE; Floating point exception error **) SURFEX soil temperature related input?

- Exp3 Cycling +3h forecast from previous run. Warm-start
- Exp4 Cycling +3h forecast from previous run. Warm-start. Use NetAtmo: RH2m
- Exp5 Cycling +3h forecast from previous run. Warm-start. Use NetAtmo: RH2m and T2m


**) In file: src/surfex/SURFEX/mode_thermos.F90 #Line: 182
PPSAT(JJ) = EXP(ZALP(JJ) - ZBETA(JJ)/PT(JJ) - ZGAM(JJ)*LOG(PT(JJ)))

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTI

Crash in 1h own-cycling setup, after 4 days

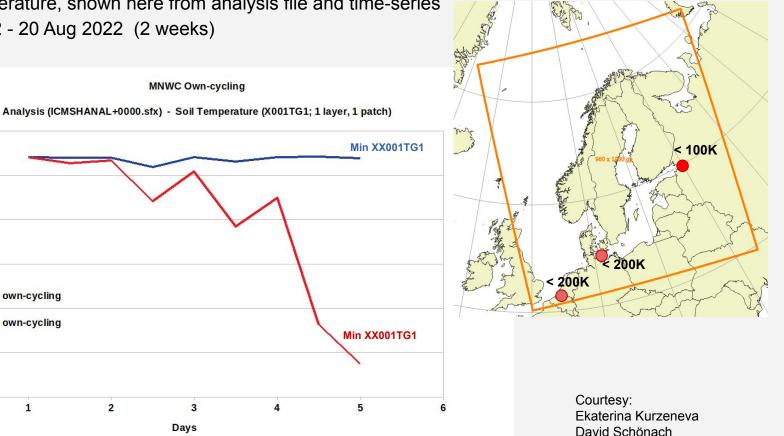

Use ECHKEVO tool for 1h and 3h cycling

"ECHKEVO provides diagnostics of the gridpoint evolution during model integration (imbalances in initial state)"

Crash in 1h own-cycling setup

Drift in the soil temperature, shown here from analysis file and time-serie Period: 16 Aug 2022 - 20 Aug 2022 (2 weeks)

Courtesy: Ekaterina Kurzeneva David Schönach


Crash in 1h own-cycling setup

- 1h own-cycling

Temperature (K)

Drift in the soil temperature, shown here from analysis file and time-series Period: 16 Aug 2022 - 20 Aug 2022 (2 weeks)

Period: 16-31 Aug 2022 (2 weeks)

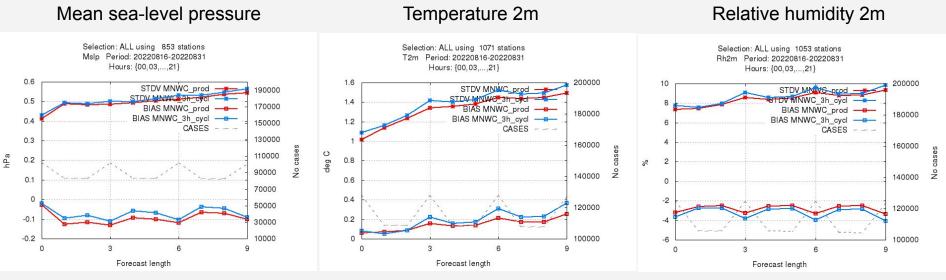
Ref1 - MNWC_preop with FG from MEPS

Exp2 - Cycling +1h forecast from previous run.

Warm-start

Crash beg of Forecast after 4 days! SIGFPE; Floating point exception error **' SURFEX soil temperature related input?

^{**)} In file: src/surfex/SURFEX/mode_thermos.F90 #Line: 182
PPSAT(JJ) = EXP(ZALP(JJ) - ZBETA(JJ)/PT(JJ) - ZGAM(JJ)*LOG(PT(JJ)))


Period: 16-31 Aug 2022 (2 weeks)

3h-cycling little worse STDV

But slightly better BIAS

MONITOR verification results

Use of own 3h-cycling gives slightly worse results compared to use of MEPS FirstGuess

3h-cycling worse BIAS and STDV

3h-cycling worse BIAS and STDV

Conclusions:

- Own-cycling, both UA and SFC:
 - 1h cycling crashes after ~4 days due to spinup (?) in soil temperature
 - ECHKEVO, model dynamics: Less instabilities with 3h own-cycling
 - DDH, model physics: No conclusions yet, TBD
 - Verification scores not improved using 3h own-cycling
- Use of NetAtmo does not improve the scores

Further tests are needed:

- Investigate 1h own-cycling crash
- Impact of cycling SFC and UA fields, individually
- How to improve using NetAtmo

Outline of presentation

Operational status:

Metcoop-NoWCasting (MNWC)

Developments, on-going and planned:

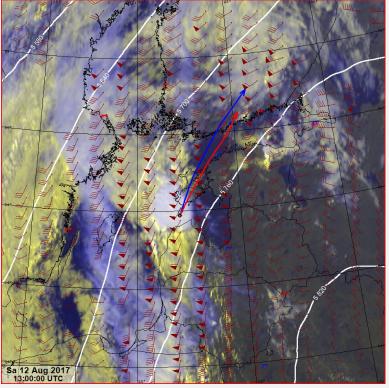
Own-cycling and NetAtmo

High-resolution - Related to Destination Earth On-Demand Extremes Digital Twin

Mesoscale Convective System (MCS) thunderstorm passing over south of Finland: 12 August 2017

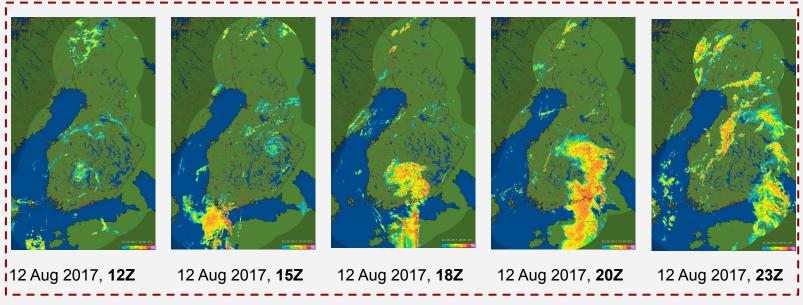
1 000 weather-related tasks for civil protection

50 000 households suffering from electricity disruptions


3 M€ forest damage

33 m/s highest measured wind speed

Several outdoor events interrupted



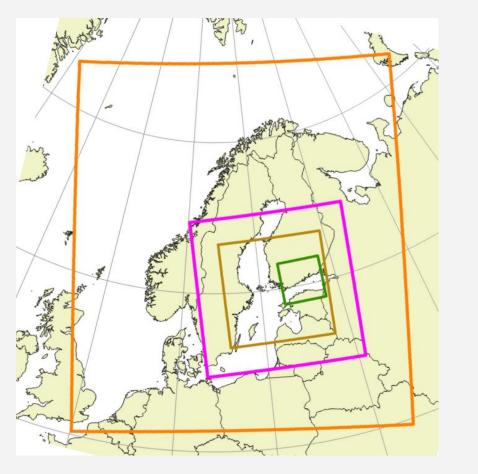
Storm "Kiira"

Mesoscale Convective System (MCS) thunderstorm passing over south of Fin

- Radar images, reflectivity (dBz)
- Main event, severe weather, took place **between 15-21Z** on the 12't of Aug 2017
- Some time-steps of radar imaginary are missing in this section

12h Precipitation accumulation period

Model configurations


HAR^{*} - HARMONIE MetCoOp domain HAR^{**} - HARMONIE High-resolution domain

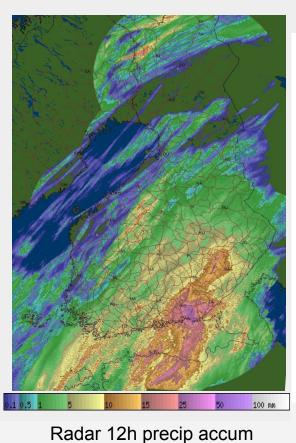
Config	Coupling	Model version	Grid points (Inner nest)	Resolution	TSTEP	BDINT	UA DA	GRID_TYPE	Spinup	Levels
1 Nest	IFS-HAR*	cy43	960x1080	2.5 km	75	1	3DVAR	LINEAR	1 month	65
1 Nest	IFS-HAR*	cy46	960x1080	2.5 km	75	1	3DVAR	LINEAR	1 month	65
1 Nest	IFS-HAR**	cy46	800x720	750 m	30	6	None	CUBIC	10-0 days	90
2 Nest	IFS-HAR [*] HAR [*] -HAR ^{**}	cy46	500x500, 1500x1500	750 m	20, 30, 40	1, 3, 6	None	CUBIC	5-0 days	90
2 Nest	IFS-HAR [*] HAR [*] -HAR ^{**}	cy46	500x500, 1500x1500	500 m	30	1, 6	None	CUBIC	0 days	90
3 Nest	IFS-HAR [*] HAR [*] -HAR ^{**} HAR [*] -HAR ^{**}		1500x1500	200 m	15	1	None	CUBIC	0 days	90

High-resolution: Domains and resolutions

MetCoOp-MEPS domain: 2'500 m, 960x1080 gp

High-res domain 1: 750 m, 1500x1500 gp

High-res domain 2: 500 m, 1500x1500 gp

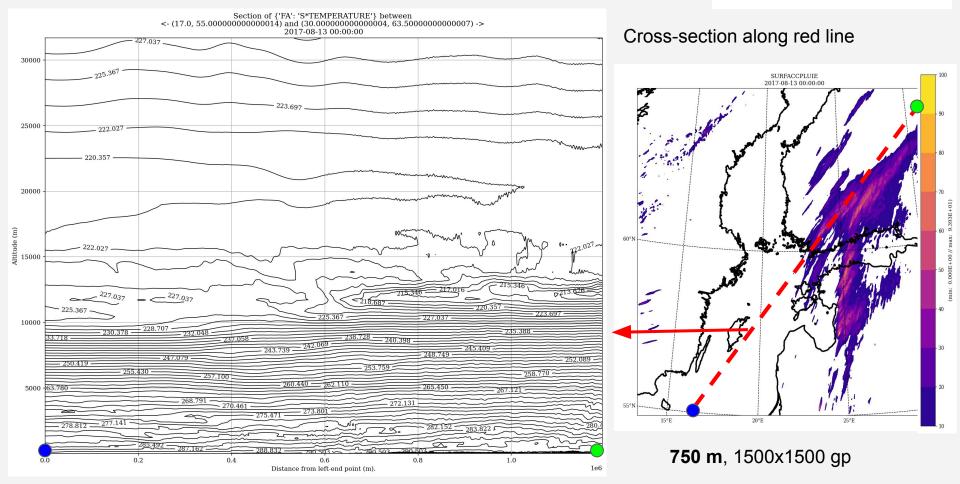


High-res domain 3: 200 m, 1500x1500 gp

High-resolution: Resolution: 2'500m vs 750m

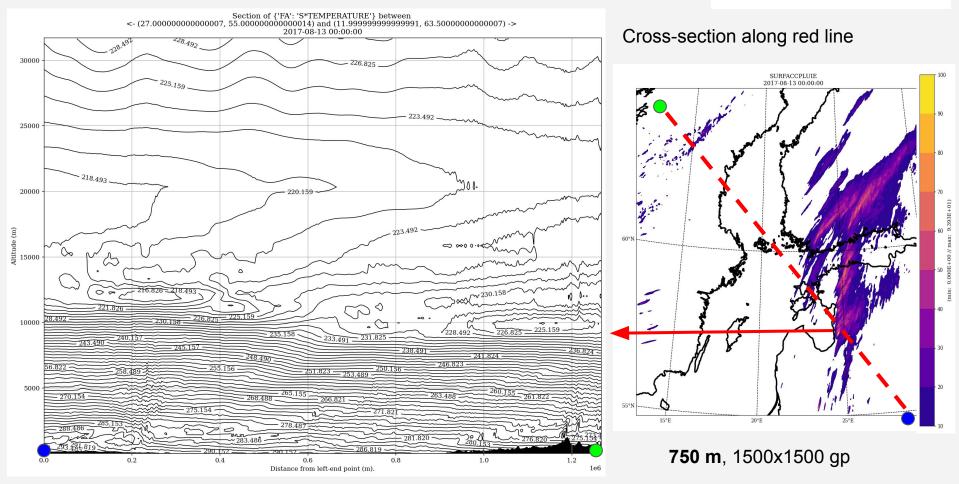
12h accumulation output

High-resolution improves the precipitation Though, placement is not optimal

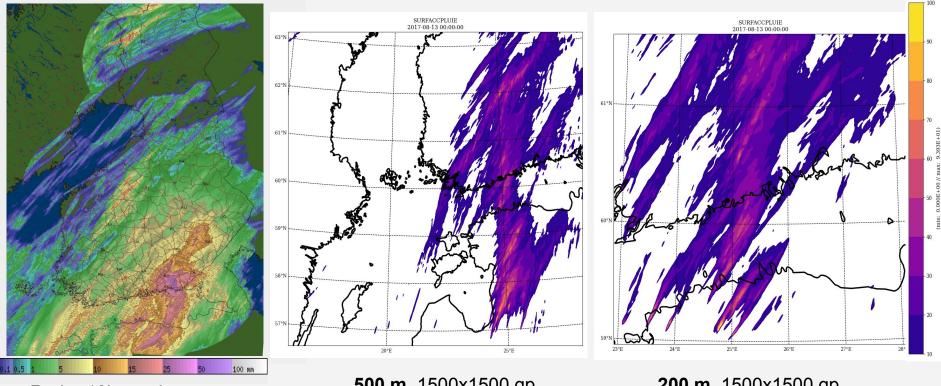


2'500 m, 960x1080 gp

750 m, 1500x1500 gp


High-resolution: Cross-section of Temperature with height (m)

High-resolution: Cross-section of Temperature with height (m)

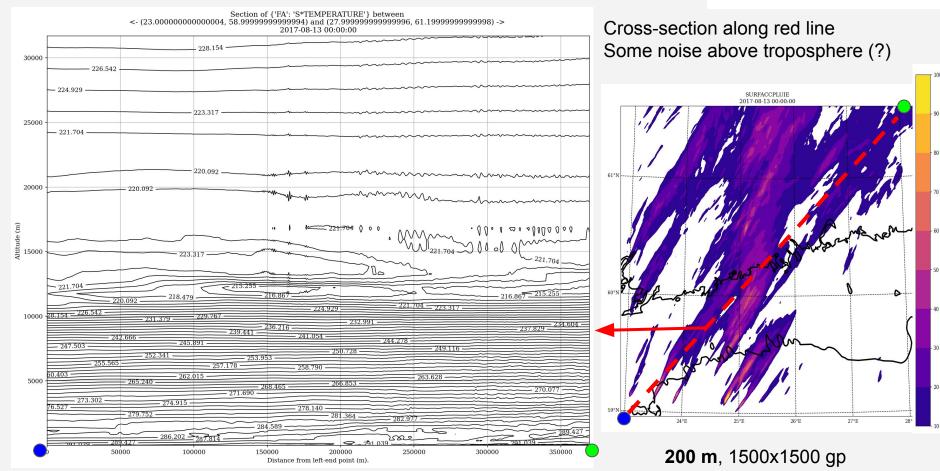


High-resolution: Resolution: 500m vs 200m

12h accumulation output

Important to have large enough domain, number of grid-points Several nested domains better to reach high resolution

Radar 12h precip accum


500 m, 1500x1500 gp

200 m, 1500x1500 gp

High-resolution: Cross-section of Temperature (Kelvin)

393E+01

High-resolution: Resolution

Conclusions:

Nesting within Harmonie ("same forecast") better option, compared to nesting directly from IFS

- Using "same forecast" potential problem with excessive precipitation accumulation
- The placement of MSC is still controlled by the "host-model"

High resolution (200-750m) improves the accumulation near coastline

- Accumulation pattern also better
- High resolution need a sufficient large domain (grid points)

Use of cloud condensates in LBC does improve the precipitation forecast

Use of some days spinup (5-days) does improve the forecast, compared to no spinup (0 days)

TSTEP ranging from 20-40 seconds gave similar outcome (hor. res. 500m)

BDINT=1 gives clearly better result compared to BDINT=3 and 6

No "noise" in upper-air temperature, for high resolution in our domain

g 9.393E+01) (min: 0.000E+00 // max: 9.393E+01)

Thank you!

Thank you!