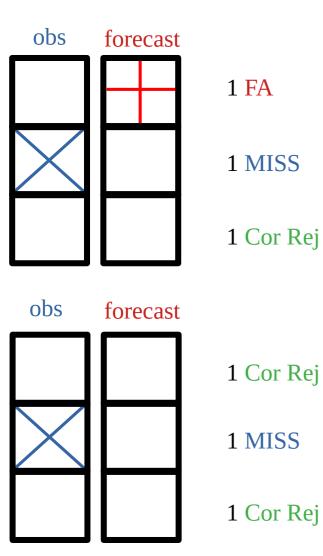
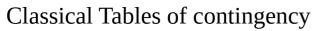


Use of the neighborhood Brier Divergence for ensemble forecasts verification

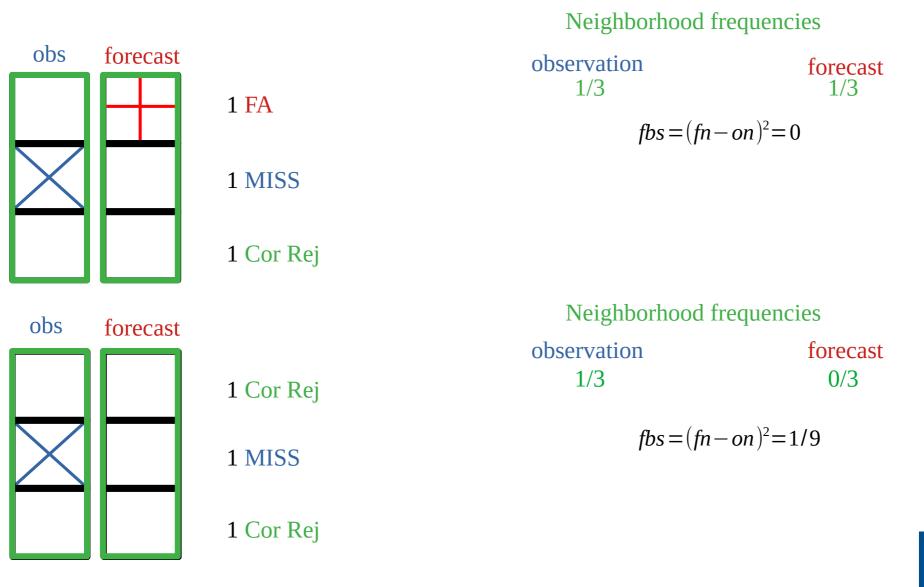
J. Stein and F. Stoop DirOP/COMPAS Météo-France ACCORD Meeting 28/03/2023

- Interest of the neighborhood
- Neighborhood pooling, Brier Divergence and its decomposition
- Comparison of probabilistic QPF
- Conclusions





RÉPUBLIQUE FRANÇAISE Liberté Exaturité



Classical Tables of contingency

Reward forecasts of events spatially slightly misplaced

Neighborhood frequencies forecast observation forecast 1/31/3 $1 \, \text{FA}$ $fbs = (fn - on)^2 = 0$ 1 MISS 1 Cor Rej Neighborhood frequencies forecast observation forecast 1/30/31 Cor Rej $fbs = (fn - on)^2 = 1/9$ 1 MISS

1 Cor Rej

Classical Tables of contingency

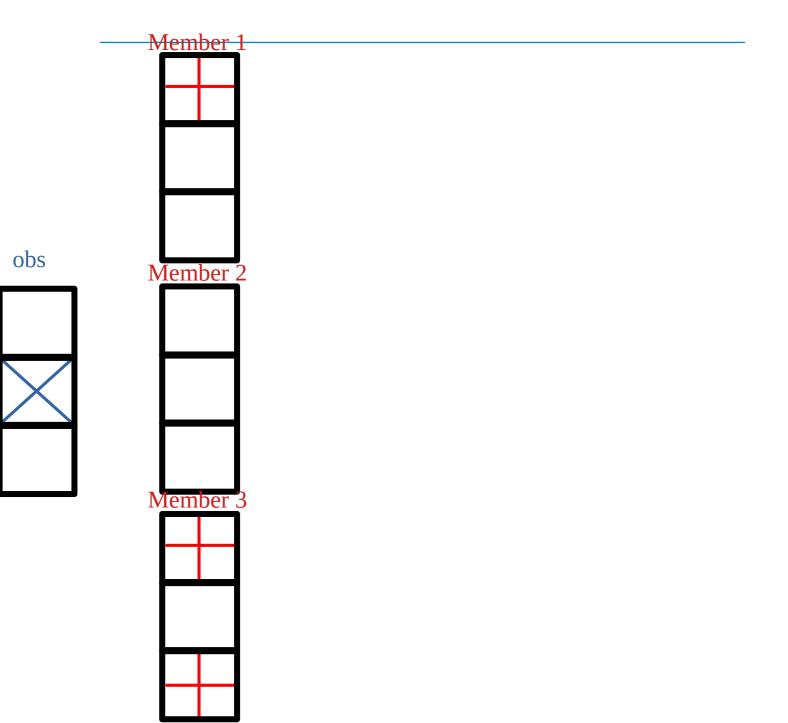
obs

obs

Fraction Brier Score=> fss (Roberts and Lean 2008) and bss (Amodei and Stein 2009)

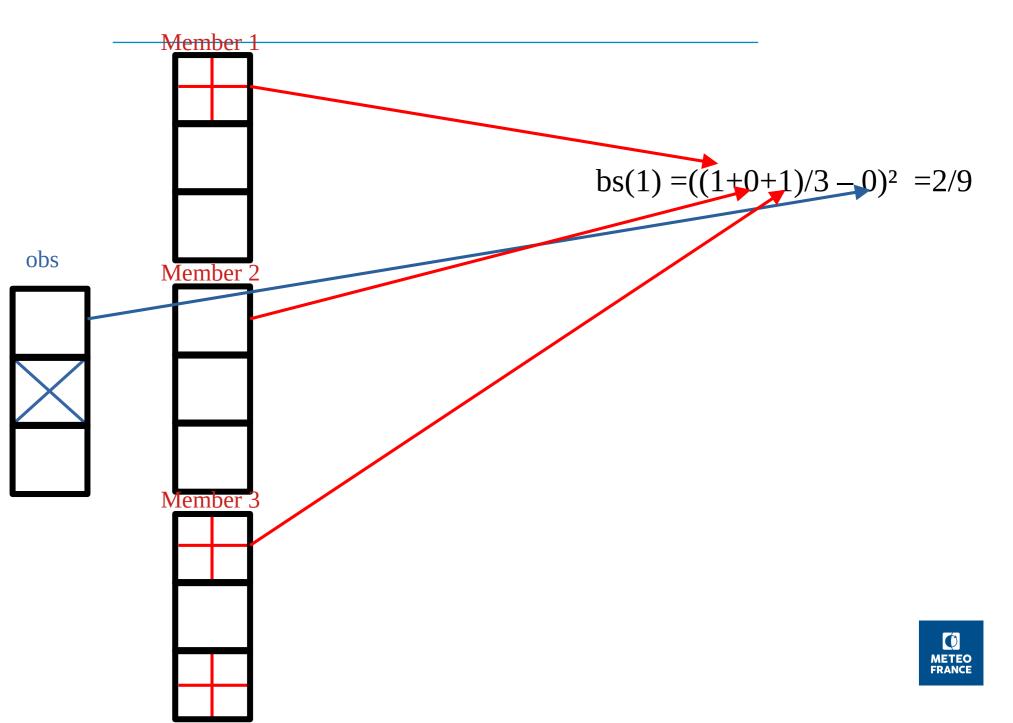
- Interest of the neighborhood
- Neighborhood pooling, Brier Divergence and its decomposition
- Comparison of probabilistic QPF
- Conclusions

BS classical method

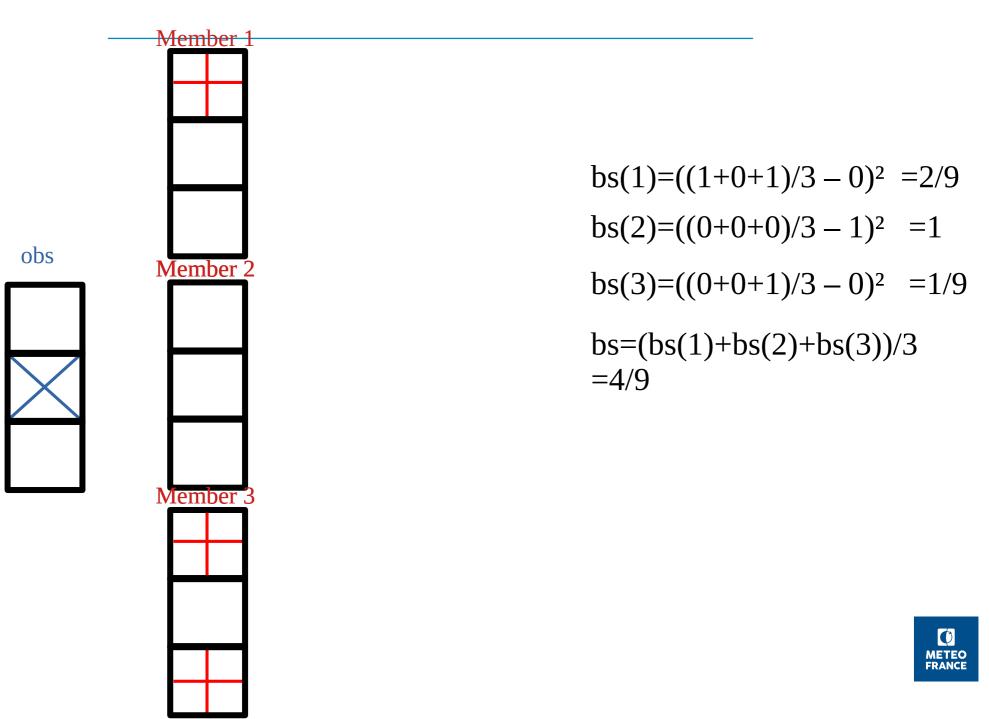


METEO FRANCE

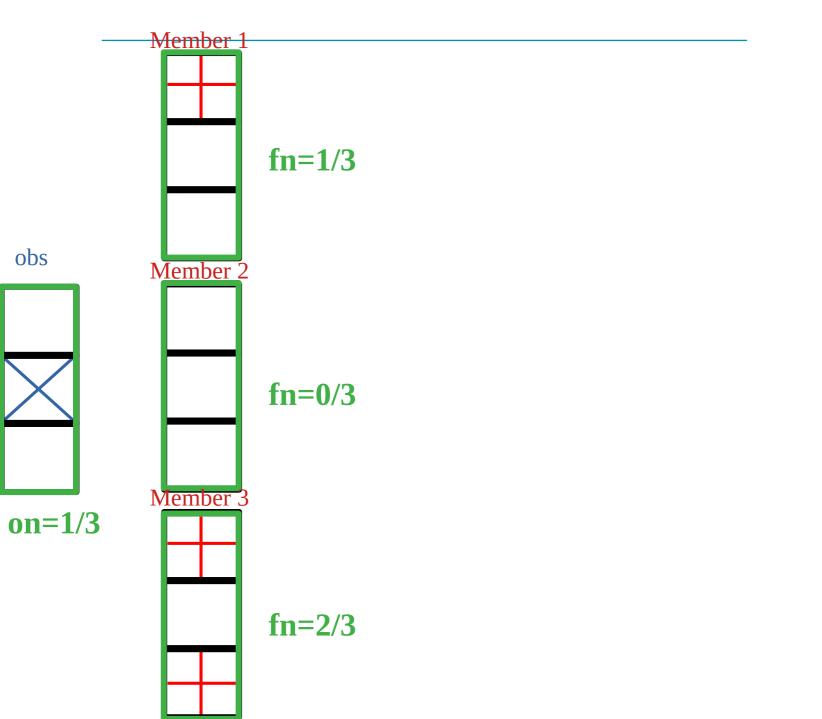
BS classical method



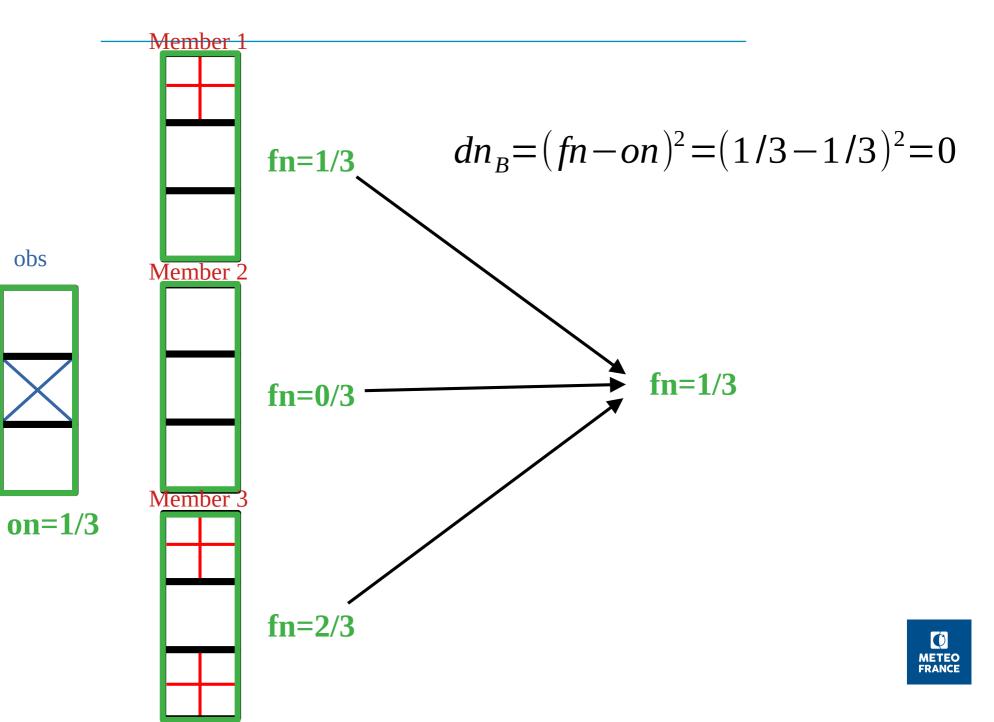
BS classical method



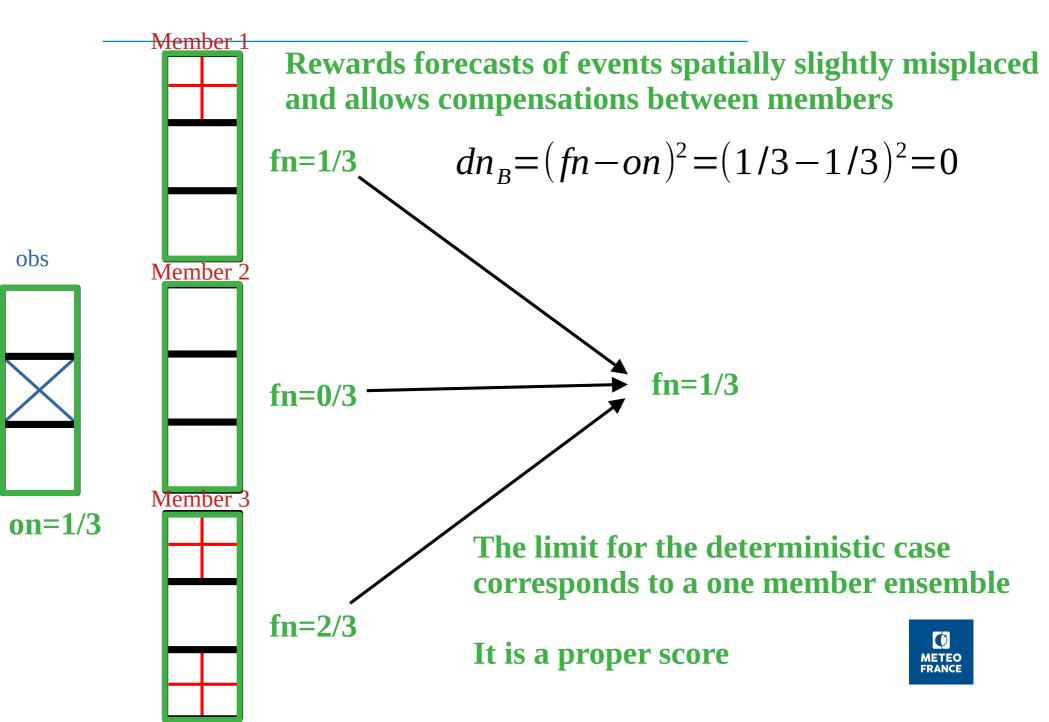
Neighborhood pooling and Brier divergence



Neighborhood pooling and Brier divergence



Neighborhood pooling and Brier divergence



Decomposition of the Brier divergence

M disjoint arbitrary bins spanning [0,1] for fn, as in Stephenson etal 2008

$$\overline{dn_{B}} = \frac{1}{n} \sum_{k=1}^{M} \sum_{j=1}^{n_{k}} (fn_{j} - on_{j})^{2} = UNC + REL - GRES$$

$$UNC = \overline{on^{2} - (\overline{on})^{2}}$$

$$REL = \frac{1}{n} \sum_{k=1}^{M} n_{k} (\overline{fn_{k}} - \overline{on_{k}})^{2}$$

$$GRES = RES - WBV + WBC$$

$$RES = \frac{1}{n} \sum_{k=1}^{M} n_{k} (\overline{on_{k}} - \overline{on})^{2}$$

$$WBV = \frac{1}{n} \sum_{k=1}^{M} \sum_{j=1}^{n_{k}} (fn_{j} - \overline{fn_{k}})^{2}$$

$$WBC = \frac{1}{n} \sum_{k=1}^{M} \sum_{j=1}^{n_{k}} (fn_{j} - \overline{fn_{k}})(on_{j} - \overline{on_{k}})$$

Decomposition of the Brier divergence

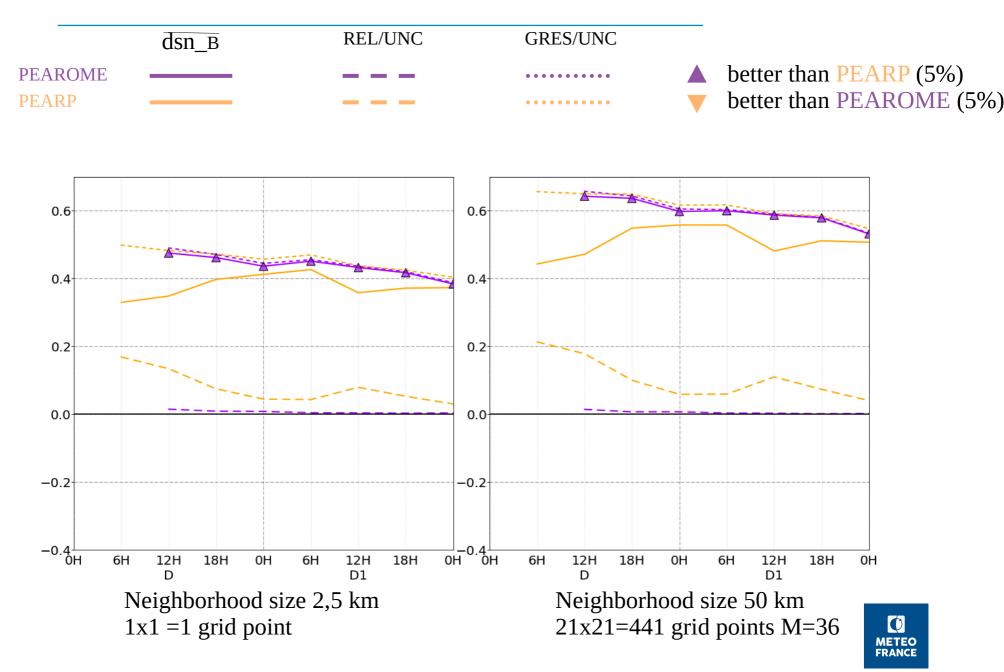
$$\overline{dsn_B} = 1 - \frac{dn_B}{UNC} = \frac{GRES}{UNC} - \frac{REL}{UNC}$$

$$\overline{fss} = 1 - \frac{\overline{dn_B}}{\overline{on^2} + \overline{fn^2}}$$

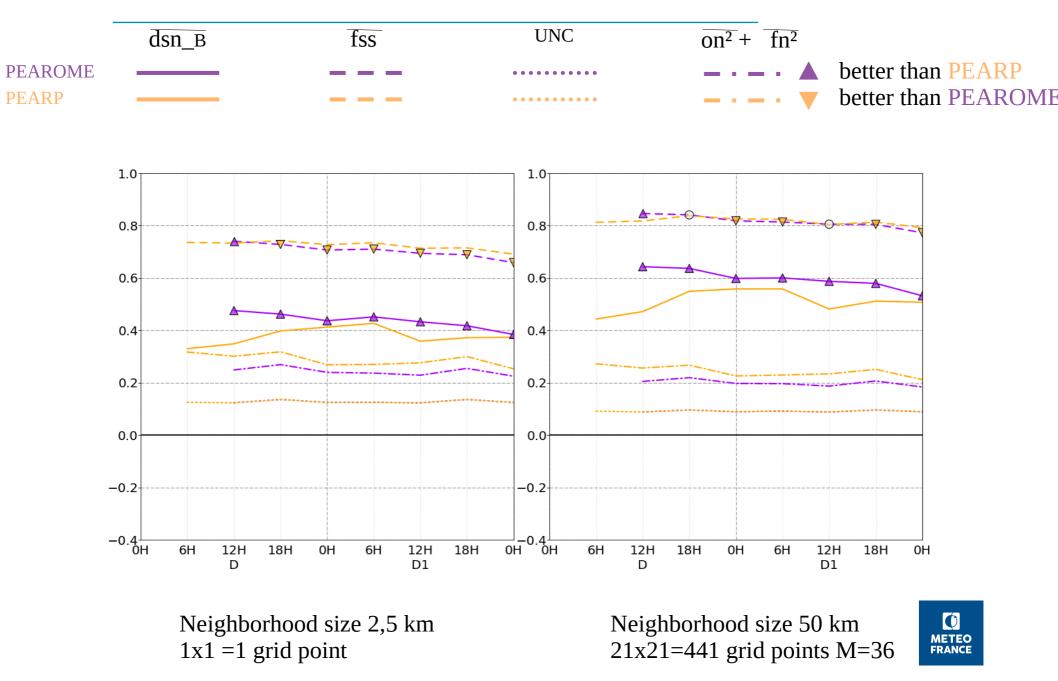
- Interest of the neighborhood
- Neighborhood pooling, Brier Divergence and its decomposition
- Comparison of probabilistic QPF
- Conclusions

- PEARP : 35 hydrostatic global forecasts ; 7,5 km over France ; Singular vectors + EDA and 10 physics
- PEAROME : 16 non-hydrostatic forecasts nested in PEARP ; 2,5 km over France ; EDA and stochastic physics
- ANTILOPE : data fusion between french radar observations and raingaujes ; 1 km grid over France
- Verification of QPF accumulated during 6 hours on the same grid (2,5 km) : from 01 january to 31 december 2020 over France

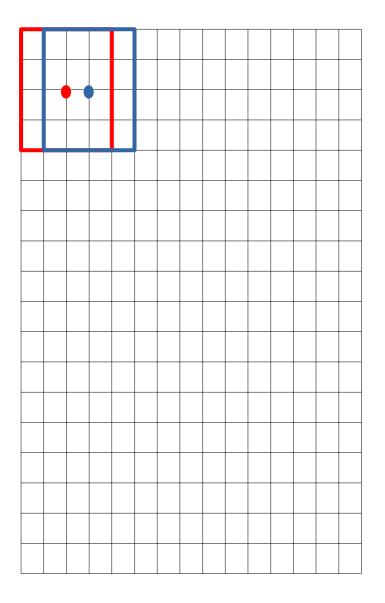
Comparison with dns_B of PEAROME and PEARP for the event rr6 > 0,5 mm

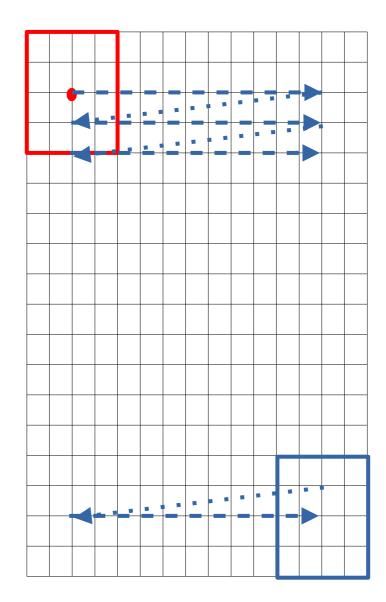


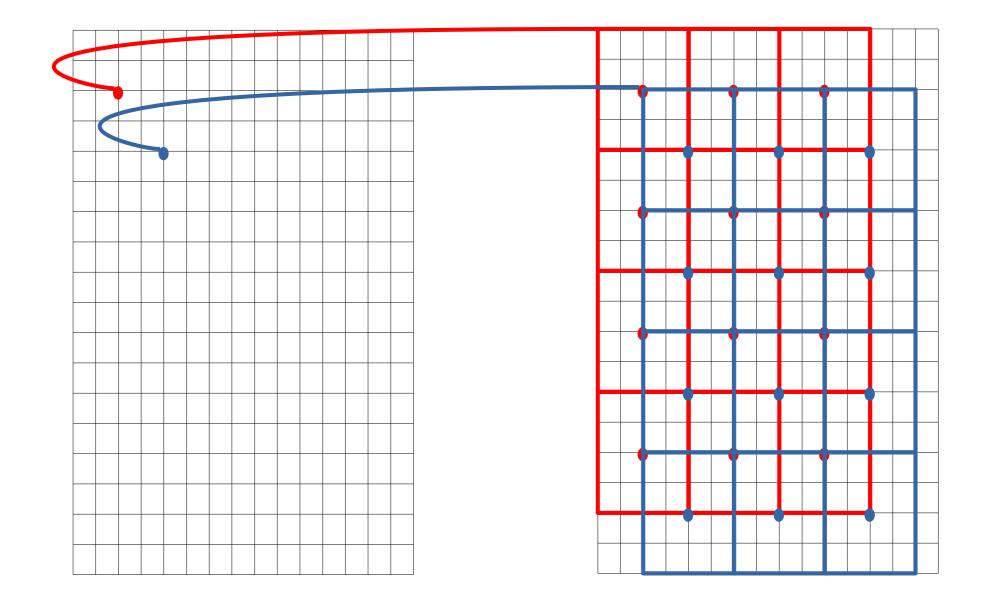
Comparison with dns_B and fss of PEAROME and PEARP for the event rr6 > 0,5 mm/6H



- Two steps procedure : 1) pooling in the neighborhood 2) use of the Brier divergence dn_B for neighborhood frequencies => Proper score for the scale given by the neighborhood size
- Reduces the double penalty by construction
- Decomposition of the Brier divergence into UNCertainty, RELiability, Generalized RESolution
- Skill score dsn_B using UNCertainty keeps the order given by the Brier divergence unlike fss
- Stein and Stoop (2023) in revision for Monthly Weather Review







Comparison with dns_B of PEAROME and PEARP for the event rr6 > 0,5 mm/6H

