Validation of torus mapping method for dealiasing Doppler weather radar velocities

P.Smerkol B.Strajnar V. Švagelj

P.Smerkol, B.Strajnar, V. Švagelj

Aliasing of radial wind measurements

- Radial wind measured via phase shift of the scattered EM wave.
- Phase shift is circular on interval [-π, π] ⇒ there exists a maximal unambiguous measured velocity v_{nv} - Nyquist velocity.
- Phase shift measured between pulses:

$$v_{ny} = rac{\lambda}{4 au_p} = rac{PRF \cdot \lambda}{4}.$$

- Observed velocities (v_o) larger than v_{ny} are folded (aliased) back to interval [-v_{ny}, v_{ny}].
- Multiple aliasing can occur \Rightarrow the real radial velocity v_r :

$$v_r = v_o + 2nv_{ny},$$

where n is an integer - Nyquist number.

P.Smerkol, B.Strajnar, V. Švagelj

Torus mapping method

Assumes a smooth radial wind velocity field, linear in zonal and meridional speeds at a specific height:

$$v_r \approx v_m(u, v) = (u \sin \alpha + v \cos \alpha) \cos \phi.$$

Radial velocity as a function of azimuth has discontinuities because of aliasing \Rightarrow map the function onto torus \Rightarrow continuous curve:

$$F(\alpha) = \left(\left[R + \frac{v_{ny}}{\pi} \sin\left(v_o \frac{\pi}{v_{ny}}\right) \right] \sin \alpha, \left[R + \frac{v_{ny}}{\pi} \sin\left(v_o \frac{\pi}{v_{ny}}\right) \right] \cos \alpha, \frac{v_{ny}}{\pi} \cos\left(v_o \frac{\pi}{v_{ny}}\right) \right).$$

P.Smerkol, B.Strajnar, V. Švagelj

ヨト イヨト

Torus mapping method

Express derivative of third component of torus function as:

$$D = \frac{\partial F_3}{\partial \alpha} = -au + bv, \ a = \cos \alpha \cos \phi \sin \left(v_o \frac{\pi}{v_{ny}} \right), \ b = \sin \alpha \cos \phi \sin \left(v_o \frac{\pi}{v_{ny}} \right)$$

Evaluate D from data by a numerical estimate, calculate a and b for all data points, find u and v for data subsets k by minimizing:

$$\{u, v\} = \min_{u, v} \sum_{k=1}^{N} \left[D_k - (-ua_k + vb_k) \right]^2,$$

Find Nyquist number by minimizing:

$$n=\min_{n}\left[\left|v_{o,k}+2nv_{ny,k}-v_{m,k}\right|\right], n\in\mathbb{Z}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Algorithm implementation

- Central differences used for numerical derivative estimation ⇒ any measurement without two neigbours in azimuth direction rejected mostly noise and edges,
- Dealiasing done on subsets within 100 m height intervals,
- Interval with < 500 points or value of $v_m > 60m/s$ rejected, to reduce nonconverged minimizations.

Dealiasing - individual cases

14

P.Smerkol, B.Strajnar, V. Švagelj

Torus mapping validation

7 / 15

2

Dealiasing - minimization covergence

Minimization does not always converge to correct values, main reasons:

- linear wind assumption not satisfied in a single height interval,
- only a small portion of azimuth is filled,
- large amount of noise present in data.

Noise - main cause of wrong convergence, contains random values centered around zero \Rightarrow numerical derivative has big fluctuations. Some form of noise removal recommended before dealiasing.

P.Smerkol, B.Strajnar, V. Švagelj

Torus mapping validation

Goal: show that dealiased radar measurements are comparable to other established upper-air wind measurements and show usefulness for NWP data assimilation.

- Comparison of pair-wise colocated wind measurements from radars, radiosondes and aircraft. Maximum separation for colocation is 10 km in horizontal, 100 m in vertical and 10 min in time.
- Comparison against results from ALADIN NWP model.
- Analysis of effect of quality control in data assimilation in ALADIN.

.

Dataset

Measurements from whole year 2021, on used NWP domain.

• Radar - OPERA dataset, divided into 2 subsets:

- Dataset A: Both Slovenian radars, minimum $v_{ny} = 8$ m/s. Only one value of small $v_{ny} \Rightarrow$ dealiasing effect clearer.
- Dataset B: German, Slovakian and French radars, minimum $v_{ny} \gtrsim 30$ m/s. Study usefulness of dealiasing with bigger v_{ny} .
- Radiosondes accurate, but sparse,
- Aircraft Mode-S derived data much larger statistics,
- NWP dataset used ALARO operational configuration with 4.4 km resolution, 3h DA cycling. First guess departures calculated, with accompanying quality control flag.

Validation - colocated observations

Comparing distributions of differences of colocated observation values, using the sonde-aircraft distribution as reference.

Spread reduced in both datasets, peaks corresponding to $n = \pm 1$ reduced by an order of magnitude, dealiased distributions comparable to reference.

< □ > < □ > < □ > < □ > < □ > < □ >

Validation - NWP first guess departures

Comparing distributions of FGD for aircraft and radar colocated pairs.

Aliased data			
Case	N	avg [m/s]	std [m/s
aircraft u FGDD A	28086	-0.19	3.44
aircraft v FGDD A	28086	-0.33	3.43
radar FGDD A	28086	0.66	10.33
aircraft u FGDD B	1864975	-0.01	2.78
aircraft v FGDD B	1864975	0.12	2.7
radar FGDD B	1864975	0.02	5.72
Dealiased data			
aircraft u FGDD A	23144	-0.17	3.4
aircraft v FGDD A	23144	-0.35	3.45
radar FGDD A	23144	0.12	4.18
aircraft u FGDD B	1474331	-0.02	2.83
aircraft v FGDD B	1474331	0.12	2.74
radar FGDD B	1474331	0.14	3.49

Effect of dealiasing very similar to effect in colocated observations.

P.Smerkol, B.Strajnar, V. Švagelj

Torus mapping validation

э

Validation - NWP first guess departures

Comparing distributions of FGD for aircraft and radar for all available measurements in SI and DE radars.

Aliased data					
Case	N	avg [m/s]	std [m/s]		
SI dataset	5885707	-0.44	9.7		
DE dataset	40455234	0.09	5.39		
Dealiased data					
SI dataset	4490567	0.12	4.7		
DE dataset	32705072	0.1	3.29		

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

More statistics \Rightarrow we can see peaks corresponding to multiple Nyquist numbers, all reduced by an order of magnitude.

Validation - NWP DA quality control

Checking interaction of dealiasing and DA quality control \Rightarrow a threshold imposed on first guess departures.

Acceptance rate is increased by correction of values by dealiasing, although for data with smaller v_{ny} , a stricter threshold would be required.

P.Smerkol, B.Strajnar, V. Švagelj

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusions

First systematic evaluation of the torus mapping algorithm on a large dataset over Europe over a time period of one year.

- Torus mapping algorithm is a robust procedure, although dependent on noise,
- dealiasing significantly improves the quality of radial wind measurements,
- about 90% of dealiased data is correctly dealiased (a rough estimate),
- radar observation quality is increased to the level of aircraft and radiosonde data,
- dealiasing is useful even for radars with larger v_{ny} ,
- for DA, it increases the acceptance rate, we propose a stricter quality control threshold for data with smaller v_{ny} .

Algorithm is already available as part of HOOF on ACCORD wiki pages.

イロト 不得 トイヨト イヨト