ACC = RD

A Consortium for COnvection-scale modelling Research and Development

Status of code refactoring and GPU adaptation

Daan Degrauwe, Piet Termonia

ACCORD ASW 2023

Motivation

• Top 500 HPC systems:

16 out of 20 top systems have accelerators

• Green 500:

40 first systems have accelerators

- EuroHPC infrastructure is targeted in the DE_330 project
- Trend towards using external HPC facilities for research and even operations

Rank	System	Cores
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE D0E/SC/Oak Ridge National Laboratory United States	8,730,112
2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,220,288
4	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, Atos EuroHPC/CINECA Italy	1,463,616
5	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592

Adaptation strategy

- Make adaptation as transparent as possible to science developers: principle of "separation of concerns"
- Make sure performance on CPUs is not impacted
- 3 pillars of code adaptation:
 - Smart (hardware-aware) data structures
 - Source-to-source transformation tools
 - > Hardware-specific libraries

Activities

- CY48T3
- ARPEGE progress
- ALARO refactoring
- HARMONIE-AROME refactoring and PHYEX repository
- Granularity of parallel loops
- Familiarization with Loki
- Spectral transforms on GPUs

First steps are targeted at increasing the *flexibility* of the code

CY48T3

- provide interface for accelerator specificities, e.g.
 - OpenMP or OpenACC?
 - Data exchanges between CPU and accelerator

ALARO refactoring

CY48T2 Fortran code Raw arrays

CY48T3

Refactoring:

- Extract APL_ALARO from APLPAR remove non-ALARO and obsolete options
- Group calculations and subroutine calls • belonging together, e.g.
 - mixing
 - radiation
 - turbulence and surface
 - deep convection
 - microphysics
 - diagnostics

This grouping makes step-by-step porting to accelerators possible

APL_ALARO

Activities: HARMONIE-AROME work

CY48T2 Fortran code Raw arrays

CY48T3 Fortran code, fypp Encapsulated data

- AROME-MF and HARMONIE-AROME parameterizations are shared with the Meso-NH model
- To avoid divergence, these were put in a common external repository: PHYEX
- Requires changes in HARMONIE build system
- APL_AROME will also be cleaned/streamlined*

Parallel granularity

The current code is coarsely granular

ACC C RD A Consortium for COnvection-scale modelling Research and Development

Parallel granularity

A more flexible code also allows finely granular parallelism

Parallel granularity

Source-to-source transformation

Spectral transforms on GPU

ACC RD A Consortium for COnvection-scale modelling Research and Development

To conclude

- Adapting code to the future is a complicated task...
 - ... especially when trying not to disturb the scientists
- Many activities are ongoing, but they fit in a bigger scheme!

To conclude

- Adapting code to the future is a complicated task...
 ... especially when trying not to disturb the scientists
- Many activities are ongoing, but they fit in a bigger scheme!
- The biggest highlight of last year is the contribution to code adaptation by so many of you!

Thank you!

