Adapting our parameterisations for the grey zone

Charlotte Raven, Wim de Rooy, Natalie Theeuwes, Pier Siebesma, Louise Nuijens

Fundamental question: Processes become partly resolved, what to do?

Here considering 3 schemes: • convection

- turbulence
- cloud (!?)

Statistical cloud scheme \rightarrow grey zone??

However, in Arome and Harmonie-Arome there is a third contribution from the extra variance term! (see de Rooy et al., 2022 GMD)

Suggestion: linear decrease from current value at 2.5km to 0 at 100m resolution (LES)

Convection and turbulence in the grey zone

h+h_c is an estimate of the relevant (dominant) scales

Boundary layer height h or h+h_c as an estimate of the scales

LES: h or h+h_c less trivial. Several options tried but best: Top level with $q_1>0$ or if no q_1 height with minimum w' θ_v ' Harmonie-Arome: h or $h+h_c$ Very simple: Termination height moist and/or dry updraft. Moist \leftrightarrow dry \rightarrow New possibilities! Decrease Mass flux with $f(\Delta x/h)$ (Lancz et al. 2018) But Now separately for dry (h) and moist (h+h_c)

Start with a simple case of (very) shallow convection 16th July 2022

h or h_c generally okay with q_l or w' θ_v ' criteria

In the cloud (LES results)

LES domain =15x15km2

- T = 8.00 h
- Resolved moisture flux (w'q'_t)
- Resolved liquid water flux (w'q')
- Resolved momentum flux (w'u')
- Resolved liquid potential temperature (w'Θ_i)
- Unresolved moisture flux (w'q'_t)
- Unresolved liquid water flux (w'q')
- Unresolved momentum flux (w'u')
- Unresolved liquid potential temperature (w'O_l)

Scales in cloud layer: momentum larger q_I smaller

Dry boundary layer (LES results)

2.5km run (conv. on)

1.0

Preliminary results with HARMONIE-AROME with scale-aware convection scheme

> HARMONIE-AROME 500x500m² resolution total cloud cover

- To be checked with observations!
- Default UVmix=off but small impact this case.

Preliminary results with HARMONIE-AROME with scale-aware convection scheme

HARMONIE-AROME 500x500m² resolution resolved vertical velocity

convection scheme on

scale-aware convection

convection scheme off

Scale aware scheme positioned in between full and no convection

• First impression: scale aware scheme behaves as expected (also for energy spectrum)

Mass flux reduction factor 16th July run in scale aware runs

So far only convection considered but especially at higher resolutions also turbulence needs to be scale-aware

Applying conditional sampling in LES we can divide that part of the total transport to be done by the convection and by the turbulence scheme!

LES result: partitioning total transport in convection and turbulence (simple case)

Discussion, outlook

- LES are an important tool to develop scale-awareness in our models (Honnert)
- Many exciting topics like: differences q, T, uv, (un)organized convection, etc.
- preliminary results, like:

 -first results simple case promising for scale-aware convection
 -momentum is different from T, q
- what about intrinsically stochastic? (important for high resolutions)
- Simple start is important but EUREC4A gives unique opportunity to extend to robust, more generic model developments. (Horizontal) organization complicates things (Alessandro Savazzi et al.).

Aitäh Küsima?

www.cloudappreciationsociety.org

DALES

Coarse graining with running mean

w_filter = sc.ndimage.uniform_filter(w, size= i, mode='wrap')

