Management Group ACCORD

NWP Activities: Data Assimilation Wafa Khalfaoui

- 1. Data Assimilation at INM : Scheme & observations
- **2.** Status and General Progress
- 3. Surface Data Assimilation
- **4.** Upper Air Data Assimilation
- **5.** Scores and Results
- **6.** Summary & Outlook

1. Data Assimilation at INM: Scheme & observations

ALADIN-Tunisie DA Configuration

- 3DVAR scheme: spin up Ensemble B matrix
- 6H cycling
- Local: Synop, Temp

AROME-Tunisie DA Configuration

Tested on Meteo-France

- 3DVAR scheme : DA ensemble B matrix
- 3H cycling
- Synop, Temp, Amdar, Buoy
- *Satellite: Seviri, AMSU-A, AMSU-B, IASI

2. Status and General Progress

Implementation on HPC

Implementation of cycle 43t2. Bator Cy43 Tested for SYNOP

Surface analysis

CANARI GTS+local SYNOP

Upper Air Analysis: 3dvar scheme

- Ensemble B-Matrix
- Work on progress to use Jk blending with Arome 3dvar

Observation Pre-processing

- Pre-processing: local SYNOP, Temp
- We use Alex Deckmyn python tool « Pop-rmi » to process local conventional data

Monitoring

- HARP on going implementation

3. Surface Data Assimilation

- Observations : Synop GTS

Small domain + low observations density

- Bator Adaptation and back-phasing
- bator adaptation for the synop templates for local observation
 - CANARI OIMAN

default Parametrization

3. Surface Data Assimilation

- AROME surface scores: Mixed results

2m Temperature degradation and Relative Humidity improvement

Red: Reference

Blue: Assim experiment

RMSE — / Bias ----

Perturbed SST Observations

Perturbed SST

OSTIA files

 $^{\bullet}$ As the Sea \sim 1/6 of Tunisian domain -> fixed perturbation

- B matrices are the average of 3 B matrices calculated over 3 periods: winter (rainy season), summer (Hot & humid) and Fall (convective systems) → take on consideration all the Regimes that influence Tunisian Weather
- In order to have a positive definite B matrix, we must have the number N of differences equal to or greater than the number of vertical levels of the model (60 for Arome 2.5 km et 90 for Arome 1.3 km):

Winter-Time 07-16 February:

6 members ensemble * 10 days at 00H → 60

Fall-Time "Off season" 25September – 04October 2015:

6 members ensemble * 10 days at 00H → **60**

Summer-Time 16-20 August 2016:

6 members ensemble * 5 days * 2 runs 00H & 12H (to integrate convective phenomena) \rightarrow 60

Vertical profile of the standard deviation of specific humidity (q), temperature (t), vorticity (v) and divergence (d) for AROME-TUNISIE during winter (blue line), inter-season (cyan line) and summer (red line) periods; AROME-Tunisie (mean of the 3 periods) (blue dot) and ALADIN-TUNISIE (green dot)

4. Upper Air Data Assimilation: JK Blending

- Motivation:

Small domain + low observations density

- V matrix computation and diagnostics :

Ensemble method

Same setup and periods of the Ensemble Data Assimilation Bmatrix

Seasonal variability:(winter, summer, convective situations)

- Namelist tuning

- Code modifications

Adapting Jk ALADIN existing routines for AROME

Changing Grid point Humidity in AROME to Spectral within the code

- Experiments

4. Upper Air Data Assimilation: JK Blending

Increase in standard deviation of vorticity and divergence of EDA B matrix compared to V matrix

Vertical profile of the standard deviation of specific humidity (q), temperature (t), vorticity (v) and divergence (d) for AROME-TUNISIE during winter (blue line), inter-season (cyan line) and summer (red line) periods; B matrix (mean of the 3 periods) (red line) and V matrix (blue line)

5. Scores & Results: combined Upper Air+ Surface

ScoreCard BEDA vs XPAD

Red: XPAD Reference

Blue: BEDA Assim experiment

21 days Verification with presence of **convective situations** with **heavy precipitations** in September – October.

Total NWP index change (surface): +2.66 %

5. Scores & Results: combined Upper Air+ Surface

- 2 meter Temperature scores
- 21 days Verification against Synop
- 2 meter temperature improvement up to 9H
- degradation of the scores from 12-18 : presence of convective situations

Red: Reference
Blue: Assim experiment
RMSE — / Bias ----

5. Scores & Results: combined Upper Air+ Surface

BEDA vs XPAD

: Relative Humidity RMSE

Range (h)

- 2 meter RH scores
- -21 days Verification against Synop with convective sitations
- RH improvement up to 6H and degradation from 18H
- with DA : dryer in the morning and wetter from 18H

Red: Reference

Blue: Assim experiment

RMSE — / Bias ----

6. Summary & Outlook

- Observations:
 - Work on our **Local Data Base Observation**
 - Use of more observations: **AMDAR**, **local GNSS**,
 - Project of Purchasing **5 Radars**: implementation from 2024-2026
- Cycling of AROME surface and 3dvar locally
- **Tuning of CANARI** and 2m Temperature degradation scrores investigation
- **Jk** blending further investigations

Impact of AROME-3DVAR over convective situations: Study Cases - October 2017 Flood

Case Study - 03 October 2017

Better Prediction for the cell localization and intensity

- 3 typical systems: North-East, East Cost, South-East Cells
- *Better Prediction for the cell localization and intensity for Arome 3DVAR compared to Spin up
- *Better scores for Arome 3DVAR EDA Bmatrix compared to Bmatrix Spin up

Impact of AROME-3DVAR over convective situations: Study Cases - September 2016 Flood

POD